Countable dimensionality and dimension raising cell-like maps

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Selection principles and countable dimension

We consider player TWO of the game G1(A,B) when A and B are special classes of open covers of metrizable spaces. Our results give gametheoretic characterizations of the notions of a countable dimensional and of a strongly countable dimensional metric spaces. The selection principle S1(A,B) states: There is for each sequence (An : n ∈ N) of elements of A a corresponding sequence (bn : n ∈ N) suc...

متن کامل

Fractal Dimension and Dimensionality Reduction

ABSTRACT In this paper we investigate the relationship between several dimensionality redu tion methods and the intrinsi dimensionality of the data in the redu ed spa e, as estimated by the fra tal dimension. We show that a su essful dimensionality redu tion/feature extra tion algorithm proje ts the data into a feature spa e with dimensionality lose to the intrinsi dimensionality of the data in...

متن کامل

The length of Artinian modules with countable Noetherian dimension

‎It is shown that‎ ‎if $M$ is an Artinian module over a ring‎ ‎$R$‎, ‎then $M$ has Noetherian dimension $alpha $‎, ‎where $alpha $ is a countable ordinal number‎, ‎if and only if $omega ^{alpha }+2leq it{l}(M)leq omega ^{alpha‎ +1}$, ‎where $ it{l}(M)$ is‎ ‎the length of $M$‎, ‎$i.e.,$ the least ordinal number such that the interval $[0‎, ‎ it{l}(M))$ cannot be embedded in the lattice of all su...

متن کامل

On Asymptotic Dimension of Countable Abelian Groups

We compute the asymptotic dimension of the rationals given with an invariant proper metric. Also we show that a countable torsion abelian group taken with an invariant proper metric has asymptotic dimension zero.

متن کامل

A dimension raising hereditary shape equivalence

We construct a hereditary shape equivalence that raises transfinite inductive dimension from ω to ω + 1. This shows that ind and Ind do not admit a geometric characterisation in the spirit of Alexandroff’s Essential Mapping Theorem, answering a question asked by R. Pol.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Topology and its Applications

سال: 1997

ISSN: 0166-8641

DOI: 10.1016/s0166-8641(97)00006-0